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Abstract 
 

In this paper, the issue of consistent laminar two-dimensional limit layer MHD stream and warmth move of an 

incompressible thick liquid with the nearness of lightness power and gooey dispersal over a vertical nonlinear extending 

sheet with halfway slip is explored numerically. Numerical arrangements of the subsequent nonlinear limit esteem issue 

for the situation when the sheet extends with a speed differing nonlinearly with the separation is done. The impacts of 

for different estimations of suction parameter, attractive parameter, Prandtl number, Eckert number, lightness parameter, 

nonlinear extending parameter and slip parameter on stream and warmth move attributes is examined. 
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1. Introduction 
 
The investigation of stream over an extending sheet has 

produced much enthusiasm for ongoing years in perspective on 

its various mechanical applications, for example, the 

streamlined expulsion of plastic sheets, the limit layer along a 

fluid film, buildup procedure of metallic plate in a cooling 

shower and glass, and furthermore in polymer ventures. Since 

the pio-neering work of Sakiadis [1] which concentrated the 

moving plate stream issue, wherein different parts of the prob-

lem have been researched by numerous creators, for example, 

Cortell [2], Xu and Liao [3], Hayat et al. [4] and so forth.  

 

The investigation of two-dimensional limit layer stream, 

warmth and mass exchange over a permeable extending surface 

is significant as it finds numerous viable applications in various 

territories. To be progressively explicit, it might be brought up 

that numerous metallurgical procedures include the cool-ing of 

constant strips or fibers by illustration them through a tranquil 

liquid and that during the time spent illustration these strips, are 

some of the time extended. Thick dissemination changes the 

temperature circulations by assuming a job like a vitality 

source,which prompts influence warmth move rates. The value 

of the impact of gooey dis-  

 

sipation relies upon whether the sheet is being cooled or 

warmed.  

 

Aside from the gooey dissemination, the Joules dissipa-tion 

additionally goes about as a volumetric warmth source. Warmth 

move investigation over permeable surface is of much viable 

enthusiasm because of its plentiful applications. To be 

progressively explicit, heat-treated materials going between a 

feed roll and wind-uproll or materials fabricated by expulsion, 

glass-fiber and paper generation, cooling of metallic sheets or 

electronic chips, gem developing are a couple of handy 

utilizations of stream over an extending sheet. In every one 

of these cases, the last result of wanted attributes relies upon 

the rate of cooling and furthermore the rate of extending. In 

perspective on every one of these viewpoints, the present 

work manages the impact of gooey and Joules dissemination 

on MHD stream, warmth and mass exchange over a 

permeable sheet, with incomplete slip. Examines in these 

fields have been directed by numerous specialists. For 

instance, analyti-cal results were completed by Vajravelu and 

Hadjinico-laou [5] who considered the impacts of thick 

dispersal and inside warmth age. An examination of warm 

limit layer in an electrically directing influenza id over a 

straightly extending sheet within the sight of a  

 

steady transverse attractive field with suction or blow-ing at 

the sheet was completed by Chaim [6].  

 

In all respects as of late, the thick and joules dissemination 

and inside warmth age was considered in the vitality 

condition. Sajid et al. [7] explored the non-comparative 

diagnostic answer for MHD stream and warmth move in a 

third-request liquid over an extending sheet. He found that 

the skin grinding coefficient diminishes as the magnet-ic 

parameter or the third grade parameter increments. A 

scientific investigation has been completed on momen-tum 

and warmth move attributes in an incompressible, electrically 

directing viscoelastic limit layer liquid stream over a straight 

extending sheet by Abel et al. [8].  

 

A numerical reinvestigation of MHD limit layer stream over 

a warmed extending sheet with variable viscos-ity has been 

investigated by Pantokratoras [9].  

 

Ishak et al. [10] concentrated blended convection limit layers 

in the stagnation-point stream of an incompressible gooey 
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liquid over an extending vertical sheet.  

 

Hossain and Takhar [11] have examined the radia-tion impact 

on blended convection limit layer stream of an optically thick 

gooey incompressible liquid along a vertical plate with uniform 

surface temperature.  

 

The issue of non-direct extending sheet for contrast ent 

instances of liquid stream has additionally been broke down by 

vary ent analysts. Vajravelu [12] inspected liquid stream over a 

nonlinearly extending sheet. Cortell [13] has chipped away at 

thick stream and warmth move over a non-directly stret-ching 

sheet. Cortell [14] further examined on the ef-fects of gooey 

dissemination and radiation on the warm limit layer, over a non-

straightly extending sheet. Raptis et al. [15] examined gooey 

stream over a non-direct extending sheet within the sight of a 

substance response and attractive field. Abbas and Hayat [16] 

tended to the radiation impacts on MHD stream because of an 

extending sheet in permeable space. Cortell [17] explored the 

impact of  

 

[23] Takhar and Ram [24], and Duwairi and Damseh [25]. 

Henceforth the present examination researches the impact of 

gooey and Joules dispersal on MHD stream over a por-ous 

nonlinear vertical extending sheet with thick and joules 

scattering with fractional slip. 

2. Mathematical Analysis 
 

Two-dimensional, nonlinear, steady, MHD laminar boun- dary 

layer flow with heat transfer of a viscous, incom- pressible 

and electrically conducting fluid over a porous vertical 

stretching sheet embedded in the presence of transverse 

magnetic field including viscous and Joules dissipation is 

considered for investigation. An uniform transverse 

magnetic field of strength B is applied parallel to y-axis. 

Consider a stretching sheet that emerges out of a slit at x 

= 0, y = 0 and subsequently being stretched, as in a 

polymer extrusion process. Let us assume that the speed 

at a point on the plate is proportional to the power of its 

distance from the slit and the boundary layer ap- 

proximations are applicable. In writing the following 

equations, it is assumed that the induced magnetic field, 

the external electric field and the electric field due to the 

polarization of charges are negligible. 

Consider a steady, two-dimensional free convection 

flow adjacent to a nonlinear stretching vertical sheet 

immersed in an incompressible electrically conducting 

viscous fluid of temperature T . The stretching velocity 

Uw  x and the surface temperature Tw  x are where 

a and b are constants with a > 0 and b  0 . 

The sheet is assumed to vary nonlinearly with the dis- 

tance x from the leading  edge,  i.e.  U   x = axm  and Tw 

 x = T  bx . Under these conditions, the governing 
boundary layer equations of momentum, energy with 

buoyancy, viscous and Joules dissipation, with partial slip 

are 

similarity solution for flow and heat transfer of a quies- 

cent fluid over a non-linear stretching surface. Awang and 

Kechil [18] obtained the series solution for flow over nonlinearly stretching sheet with chemical reaction and 
 

 u 
 
v 

= 0,
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magnetic field. Cortell [19] investigated the influence of 

similarity solution for flow and heat transfer of a quies- 
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The study of magnetohydrodynamics of a conducting u  v =  x y y2 c  
y 

  
 c  
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(3) 

fluid finds applications in a variety of astrophysical and 

geophysical problems. The effects of magnetic field on 

p     p 

and are subjected to the following boundary conditions 

the natural convection heat transfer have been discussed 

by Romig [20], Elbashbeshy [21], considered heat trans- 

fer over a stretching surface with a variable surface heat 
flux. The convective heat transfer in an electrically con- 

u  x, y   L 
u 

 axm , v = v 
y w 

 x , T = Tw 

 
m1 

 bxs at y = 0 , 

ducting fluid at a stretching surface has been studied by 

Vajravelu and Hadjinicolaou [22]. Other studies dealing 

with hydromagnetic flows can be found in Grandet et al. 

where vw  x   fw x 2
 

u  0, T  T as y  , 

 

 
(4) 

 

where u and v are the velocity components along the x  

and y axes, respectively. Further, μ, ρ, α, β, T, and g are 

the dynamic viscosity, fluid density, thermal diffusivity, 

thermal expansion coefficient, fluid temperature in the 

boundary layer, and acceleration due to gravity, respec- 



  = P f    
 2s  

f   Ec.Pr  f 2  Mf 2 




(8) 

tively. 

A common feature of all these analyses is the assump- 

tion that the flow field obeys the conventional no-slip 

condition  at  the  sheet  that  is  the  velocity  component 

Boundary conditions (4) becomes 

f 0 = fw f 0 = 1  f 0, 
 0 = 1, f   0,    0. 

 

 
(9) 

u  x, y  parallel with the  sheet becomes equal to the 
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sheet velocity axm at the sheet. In certain situations, axm1 Gr 
 where   L , Re  ,  x , 

however, the assumption of no-slip does no longer apply 

and should be replaced by a partial slip boundary condi- 

tion which relates the fluid velocity u to the shear rate 
u 

 
 

and 

 
Grx 

x 

g  Tw  T 

 2 
. 

Rex 

y 
at the boundary. Here L is the slip length, and y denotes 

the coordinate perpendicular to the surface. This slip-flow 

condition was first introduced by C-L. M. H. 

Navier more than a century ago and has more recently 

been used in studies of fluid flow past permeable walls, 

slotted plates, rough and coated surfaces, and gas and 

liquid flow in micro devices. The no-slip boundary con- 

dition is known as the central tenets of the Navier-Stokes 

theory. But there are situations wherein such condition is 

not appropriate. Especially, no slip condition is inade- 

quate for most non-Newtonian fluids. For example po- 

lymer melts often exhibit macroscopic wall slip and that 

in general is governed by a non-linear and monotone 

relation between the slip velocity and traction. The fluids 

exhibiting boundary slip find applications in technology 

such as in the polishing of artificial heart valves and in- 

ternal cavities. Navier suggested a slip boundary condi- 

 

3. Numerical Solution 
 

The nonlinear boundary value problem represented by 

Equations (7) to (9) is solved numerically using Fourth- 

order Runge Kutta shooting technique. 

The system of non-linear ordinary differential Equa- 

tions (7) and (8) together with the boundary conditions 

Equation (9) are similar and are solved numerically by 

using the fourth order of Runge Kutta integration scheme 

accompanied with the Shooting scheme. Making an ini- 

tial  guess  for  the  values  of   f 0  and   0 to  in- 

itiate the shooting process is very crucial in this process. 

The success of the procedure depends very much on how 

good this guess is. Numerical solutions are obtained for 

several values of the physical parameters i.e. magnetic 

parameter M, stretching parameter m, Prandtl number Pr, 

slip   parameter        Buoyancy   parameter      , Eckert 

tion in terms of linear shear stress. 
The momentum, and energy Equations (2), (3), and (4) 

number (Ec) and, suction/injection parameter 

We have chosen a step size of   0.01 
fw . 
to satisfy 

can be transformed into the corresponding nonlinear or- 

dinary differential equations by the following similarity 

transformation: 

the convergence criterion of 10–6 in all cases. The maxi- 

mum value of      was found to each iteration loop by 

      The   maximum   value   of         to each 

group of parameter is determined when the value of the 
 m 1 a  m1 unknown boundary conditions at   0 is not changed 

 =   x 2 y, u  x, y   axm f  , 
 2 

1 
 

 

to successful loop with error less than 10–6. 

 
4. Results and Discussion 

 m 1 a 2 m1  
 m 1 

 


v  x, y       x 2    
  f    f   (5) 

 2   m 1  In order to gain physical insight, the velocity, and tem- 
perature profiles have been discussed by assigning nu- 

   = 
T  T

   . 

Tw   T

(6) 
merical values to the parameter, encountered in the 

problem i.e. numerical calculations were carried out for 

different values of suction parameter fw , magnetic pa- 

where Tw  x  T  bxs , b is dimensional constant and s rameter M, power law stretching parameter m, Prandtl 

is the index of power law variation of temperature. 

The transformed nonlinear ordinary differential equa- 

tions are 

number Pr, Eckert number Ec, buoyancy parameter λ, slip 

parameter γ, and their effects on flow and heat trans- fer 

characteristics are analysed graphically. 

Rex 1 m

1/ 2 

2 
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The influences of the magnetic parameter M on the longitudinal 

velocity profile is depicted in Figure 1. It can be seen that increasing 

M is to reduce the velocity distribution in the boundary layer which 

results in thin- ning of the boundary layer thickness, and hence 

induces an increase in the absolute value of the velocity gradient at 

the surface. 

The influence of suction parameter fw ( fw < 0), over 

the non-dimensional longitudinal velocity profiles are 

shown in Figure 2. It is seen that the effect of suction 

parameter decelerates the longitudinal velocity. 

The influence of injection parameter fw ( fw > 0), 

over the dimensionless longitudinal velocity profile is 

shown in Figure 3 and it is noticed that longitudinal ve- 

locity increases with injection. It should be noted that in 

Figure 2, the boundary-layer assumptions do not permit 

 

 

 
Figure 1. Velocity profile f' versus similarity variable η for 

a solution of the boundary-layer equation for large fw , 
different values of magnetic parameter. 

because it will approach a constant value of 1, and the 

boundary layer is almost literally blown off the surface, 

similar to that of stationary plate with injection (Bur- 

meister [26]; Kays and Crawford [27]). 

Figure 3 shows the effect of suction/injection on di- 

mensionless temperature profile and it is observed that 

there is decrease in temperature in the thermal boundary 

layer resulting in thinning of thermal boundary layer thick- 

ness in the case of suction and the reverse trend is ob- 

served for injection. Further it is clear that suction (  fw  < 
0) enhances the heat transfer coefficient much better than 

injection ( fw > 0), and the thickness of the thermal 

boundary layer is reduced. Thus, suction can be used as a 

means for cooling the surface much faster than injection. 

Figures 4 and 5, describe respectively the behaviors of 

the longitudinal velocity profile and temperature profile 

for different values of power law stretching parameter m 

and it is noticed that increase in m results in decrease of 

longitudinal velocity profile which is more pronounced 

for small values of m, where as temperature profile in- 

creases with the increase of stretching parameter m. It is 

observed that the variation of the sheet temperature has a 

substantial effect on the thermal boundary layer. This 

effect is more pronounced when sheet temperature varies 

in the direction of highest stretching rate. 

An increase in Prandtl number Pr is associated with a 

decrease in the temperature distribution which is dis- 

played in Figure 6, which is consistent with the fact that 

thermal boundary layer thickness decreases with increase 

in the values of Prandtl number. The rate of heat transfer 

increases with the increasing values of Prandtl number. 

The boundary layer edge is reached faster as Pr increas- 

es. 

 

 

 
 

Figure 2. Dimensionless velocity profile f' versus similarity 

variable η for different values of suction/injection parame- 

ter. 

Dimensionless velocity profile f   is presented in 

Figure 7 for some different values of the slip parameter γ. 

It is readily seen that γ has a substantial effect on the 
Figure 3. Temperature profile θ(η) vs similarity variable η 

for different values of suction/injection. 
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Figure 4. Dimensionless velocity profile f' vs similarity va- 

riable η for different values of m. 

 

Figure 5. Dimensionless temperature profile θ(η) vs simi- 

larity variable η for different values of m. 

 

Figure 6. Temperature profile θ(η) versus similarity varia- ble 

η for different values of Pr. 

Figure 7. Dimensionless velocity profile f' versus similarity 

variable η for different values of slip parameter γ. 

 

Figure 8. Dimensionless velocity profile vs similarity varia- ble 

η for different values of buoyancy parameter λ. 

 

solutions. In fact, the amount of slip 1  f 0 in- creases 

monotonically with γ from the no-slip solution for    0  

and towards full slip as γ tends to infinity.   The latter 

limiting case implies that the frictional resis- tance between 

the viscous fluid and the surface is elimi- nated, and the 

stretching of the sheet does no longer im- pose any motion 

of the fluid. 

In Figure 8, the effects of buoyancy parameter λ on 

dimensionless longitudinal velocity is shown graphically 

and the effects of buoyancy force is found to be more 

pronounced for a fluid with a small Pr. Thus, fluid with 

smaller Pr is more susceptible to buoyancy force effects. 

The velocity and temperature profiles presented in 

Figures 1-9, show that the far field boundary conditions 

are satisfied asymptotically, which support the validity of 

the numerical results presented. 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2017 IJCRT | Volume 5, Issue 4 Oct 2017 | ISSN: 2320-288 

IJCRT1133234 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 392 

 

 

5. References 
 

[1] B. C. Sakiadis, “Boundary-Layer Behavior on Conti- 

nuous Solid Surfaces: I Boundary Layer Equations for 

Two Dimensional and Axisymmetric Flow,” AIChE 

Journal, Vol. 7, No. 1, 1961, pp. 26-28. 

doi:10.1002/aic.690070108 

[2] R. Cortell, “Effects of Viscous Dissipation and Work Done 

by Deformation on the MHD Flow and Heat Transfer of a 

Viscoelastic Fluid over a Stretching Sheet,” Physics Let- 

ters A, Vol. 357, No. 4-5, 2006, pp. 298-305. 

doi:10.1016/j.physleta.2006.04.051 

[3] H. Xu and S. J. Liao, “Series Solutions of Unsteady 

Magnetohydrodynamics Flows of Non-Newtonian Fluids 

Caused by an Impulsively Stretching Plate,” Journal of 

Non- Newtonian Fluid Mechanics, Vol. 159, 2005, pp. 46-

55. 

doi:10.1016/j.jnnfm.2005.05.005 

[4] M. Sajid and T. Hayat, “Influence of Thermal Radiation on 

the Boundary Layer Flow due to an Exponentially 

Stretching Sheet,” International Communications in Heat 

and Mass Transfer, Vol. 35, No. 3, 2008, pp. 347-356. 

doi:10.1016/j.icheatmasstransfer.2007.08.006 

[5] K. Vajravelu and A. Hadjinicolaou, “Heat Transfer in a 

Viscous Fluid over a Stretching Sheet with Viscous Dis- 

sipation and Internal Heat Generation,” International 

Communications in Heat and Mass Transfer, Vol. 20, No. 

3, 1993, pp. 417-430. 

doi:10.1016/0735-1933(93)90026-R 

[6] T. C. Chaim, “Magnetohydrodynamic Heat Transfer over 

a Non-Isothermal Stretching Sheet,” Acta Mechanica, Vol. 

122, No. 1-4, 1977, pp. 169-179. 

doi:10.1007/BF01181997 

[7] M. Sajid, T. Hayat and S. Asghar, “Non-Similar Analytic 

 

Solution for MHD Flow and Heat Transfer in a Third- 

Order Fluid over a Stretching Sheet,” International Journal 

of Heat and Mass Transfer, Vol. 50, No. 9-10, 2007, pp. 

1723-1736. doi:10.1016/j.ijheatmasstransfer.2006.10.011 

[8] M. S. Abel, E. Sanjayanand and M. M. Nandeppanavar, 

“Viscoelastic MHD Flow and Heat Transfer over a Stre- 

tching Sheet with Viscous and Ohmic Dissipations,” Com- 

munications in Nonlinear Science and Numerical Simula- 

tion, Vol. 13, No. 9, 2008, pp. 1808-1821. 

doi:10.1016/j.cnsns.2007.04.007 

[9] A. Pantokratoras, “Study of MHD Boundary Layer Flow 

over a Heated Stretching Sheet with Variable Viscosity: A 

Numerical Reinvestigation,” International Journal of Heat 

and Mass Transfer, Vol. 51, No. 1-2, 2008, pp. 104- 

110. doi:10.1016/j.ijheatmasstransfer.2007.04.007 

[10] A. Ishak, R. Nazar and I. Pop, “Mixed Convection 

Boundary Layer in the Stagnation Point Flow towards 

Stretching Vertical Sheet,” Meccanica, Vol. 41, No. 5, 

2006, pp. 509-518. doi:10.1007/s11012-006-0009-4 

[11] M. A. Hossain and H. S. Takhar, “Radiation Effect on 

Mixed Convection along a Vertical Plate with Uniform 

Surface Temperature,” Heat Mass Transfer, Vol. 31, No. 

4, 1996, pp. 243-248. doi:10.1007/BF02328616 

[12] K. Vajravelu, “Fluid Flow over a Nonlinearly Stretching 

Sheet,” Applied Mathematics and Computation, Vol. 181, 

No. 1, 2006, pp. 609-618. doi:10.1016/j.amc.2005.08.051 

[13] R. Cortell, “MHD Flow and Heat Transfer of an Electri- 

cally Conducting Fluid of Second Grade in a Porous Me- 

dium over a Stretching Sheet Subject with Chemically 

Reactive Species,” Chemical Engineering and Processing, 

Vol. 46, No. 8, 2007, pp. 721-728. 

doi:10.1016/j.cep.2006.09.008 

[14] R. Cortell, “Viscous Flow and Heat Transfer over a Non- 

Linearly Stretching Sheet,” Applied Mathematics and Com- 

putation, Vol. 184, No. 2, 2007, pp. 864-873. 

doi:10.1016/j.amc.2006.06.077 

[15] A. Raptis and C. Perdikis, “Viscous Flow over a Non- 

Linearly Stretching Sheet in the Presence of a Chemical 

Reaction and Magnetic Field,” International Journal of 

Non-Linear Mechanics, Vol. 41, No. 4, 2006, pp. 527- 529. 

doi:10.1016/j.ijnonlinmec.2005.12.003 

[16] Z. Abbas and T. Hayat, “Radiation Effects on MHD Flow 

in a Porous Space,” International Journal of Heat and Mass 

Transfer, Vol. 51, No. 5-6, 2008, pp. 1024-1033. 

doi:10.1016/j.ijheatmasstransfer.2007.05.031 

[17] R. Cortell, “Effects of Viscous Dissipation and Radiation 

on the Thermal Boundary Layer over a Non-Linearly 

Stretching Sheet,” Physics Letters A, Vol. 372, No. 5, 

2008, pp. 631-336. doi:10.1016/j.physleta.2007.08.005 

[18] S. A. Kechil and I. Hashim, “Series Solution of  Flow over 

Nonlinearly Stretching Sheet with Chemical Reac- tion and 

Magnetic Field,” Physics Letters A, Vol. 372, No. 13, 2008, 

pp. 2258-2263. doi:10.1016/j.physleta.2007.11.027 

[19] R. Cortell, “Similarity Solution for Flow and Heat Trans- 

fer of a Quiescent Fluid over a Non-Linearly Stretching 

Surface,” Journal of Materials Processing Technology, 

Vol. 203, No. 1-3, 2008, pp. 176-183. 

doi:10.1016/j.jmatprotec.2007.09.055 

[20] M. Romig, “The Influence of Electric and Magnetic Field 

on Heat Transfer to Electrically Conducting Fluids,” Ad- 

vances in Heat Transfer, Vol. 1, 1964, pp. 267-354. 

doi:10.1016/S0065-2717(08)70100-X 

[21] E. M. A. Elbashbeshy, “Heat Transfer over a Stretching 

Surface with Variable Surface Heat Flux,” Journal of 

Physics D: Applied Physics, Vol. 31, No. 16, 1998, pp. 

1951-1955. doi:10.1088/0022-3727/31/16/002 

[22] K. Vajravelu and A. Hadjinicolaou, “Convective Heat 

Transfer in an Electrically Conducting Fluid at a Stret- 

ching Surface with Uniform Free Stream,” International 

Journal of Engineering Science, Vol. 35, No. 12-13, 1997, 

pp. 1237-1244. doi:10.1016/S0020-7225(97)00031-1 

[23] J. P. Grandet, T. Alboussiere and R. Moreau, “Buoyancy 

Driven Convection in a Rectangular Enclosure with a 

Transverse Magnetic Field,” International Journal of Heat 

and Mass Transfer, Vol. 35, No. 4, 1992, pp. 741-748. 

doi:10.1016/0017-9310(92)90242-K 

[24] H. S. Takhar and P. C. Ram,  “Magnetohydrodynamic Free 

Convection Flow of Water at 4 Degree Centigrade, through 

a Porous Medium,” International Communica- tions in 

Heat and Mass Transfer, Vol. 21, No. 3, 1994, pp. 371-376. 

doi:10.1016/0735-1933(94)90005-1 

[25] H. M. Duwairi and R. A. Damseh, “Magnetohydrody- 

namic Natural Convection Heat Transfer from Radiate 

Vertical Porous Surfaces,” Heat Mass Transfer, Vol. 40, 

No. 10, 2004, pp. 787-792. 

doi:10.1007/s00231-003-0476-2 

[26] L. C. Burmeister, “Convective Heat Transfer,” Wiley, New 

York, 1983. 

[27] W. M. Kays and M. E. Crawford, “Convective Heat and 

Mass Transfer,” 2nd Edition, McGraw-Hill, New York, 

1987. 

 

http://www.ijcrt.org/

